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Stroke remains a major cause of human disability worldwide. In parallel with advances in acute 
stroke interventions, new therapies are under development that target restorative processes. Such 
therapies have a treatment time window measured in days, weeks, or longer and so have the ad-
vantage that they may be accessible by a majority of patients. Several categories of restorative 
therapy have been studied and are reviewed herein, including drugs, growth factors, monoclonal 
antibodies, activity-related therapies including telerehabilitation, and a host of devices such as 
those related to brain stimulation or robotics. Many patients with stroke do not receive acute 
stroke therapies or receive them and do not derive benefit, often surviving for years thereafter. 
Therapies based on neural repair hold the promise of providing additional treatment options to a 
majority of patients with stroke.
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Introduction

Neural repair can be defined as restoring the structure or func-
tion of the central nervous system (CNS) after injury such as 
stroke. Numerous categories of repair-based therapies are under 
study. Therapies based on repair are distinct from those based on 
prevention and from those that aim to reduce acute injury such 
as reperfusion or neuroprotection. 

Repair-based therapies typically have a treatment time win-
dow measured in days-weeks or longer and so have the potential 
to be accessed by a large fraction of patients with stroke, includ-
ing those with hemorrhagic stroke. This is a potential advantage 
for reducing the high burden of disability after stroke. In middle- 
and high-income countries around the world, stroke is the lead-
ing neurological cause of lost disability-adjusted life years.1 Each 
year, 795,000 people in the United States experience a symp-
tomatic stroke. An estimated 6,600,000 Americans adults have 
had a symptomatic stroke, with a prevalence that increases with 
age, and 13,000,000 people in the United States have had a si-

lent stroke2 that while clinically inapparent at onset might none-
theless impact long-term function. The mean survival after 
stroke is 6 to 7 years, with approximately 85% of patients living 
past the first year of stroke.3 Thus, the majority of patients with 
stroke survive the acute episode and live with enduring disability 
for years to come.

Current acute stroke interventions reduce disability in only a 
limited fraction of patients. The only drug approved to treat 
acute stroke in the United States remains tissue plasminogen 
activator (tPA),4,5 which many patients do not receive6,7 largely 
due to its narrow treatment time window. A recent estimate is 
that approximately 5% of patients with stroke in the United 
States receive tPA acutely post-stroke.7 Importantly, half or more 
of those receiving intravenous tPA acutely post-stroke have sig-
nificant long-term disability.4,5 An even small fraction of patients 
with acute stroke receive acute endovascular reperfusion thera-
pies,8 although recent positive trials in this field are stimulating 
research into increasing the rate with which these interventions 
are given. Repair-based therapies complement acute therapies 
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not only in terms of different biological targets but also in terms 
of treatment time window, measured in days to weeks or longer, 
and so have the potential to help a large proportion of patients 
affected by stroke.

Spontaneous repair after stroke

Neural repair after stroke arises spontaneously after stroke and 
continues for many weeks, possibly for years for some behaviors 
particularly language and cognition. Understanding spontaneous 
repair provides insights useful for treatment-related repair, a 
point that is underscored by the fact that treatments promoting 
repair are often provided in the context of spontaneous repair.

Stroke triggers several molecular cascades that produce injury, 
inflammation, or spontaneous repair.9 Animal studies have pro-
vided insights into stroke-induced recovery mechanisms. These 
are summarized here, but detailed reviews can be found else-
where.10-17 An experimental stroke alters expression of numerous 
genes,13 leading to increases in levels of key growth factors,18,19 
growth of synapses and dendrites,20,21 axonal remodeling and 
angiogenesis,22-25 and enhanced brain excitability mediated by 
alterations in glutamate and gamma-aminobutyric acid (GABA) 
receptor subtypes.26-29 These events are often concentrated in 
perilesional tissue but are not confined there; indeed, spontane-
ous growth-related changes following a unilateral infact arise 
broadly, within the contralesional hemispheres,20,30,31 in ipsile-
sional areas connected to the lesioned area,32 and even down-
stream in the spinal cord.33

Brain responses to a new unilateral stroke can be organized 
into three broad temporal epochs (Figure 1). The first epoch oc-
curs during the initial hours after stroke onset and represents an 
opportunity to salvage threatened tissue, e.g., via reperfusion or 
neuroprotection. The second epoch commences days to weeks 
following stroke and corresponds to the peak weeks of sponta-
neous neural repair. Mechanisms of spontaneous recovery are 
most robust during this time.34 There are numerous specific time 
windows within this epoch which vary according to the gene or 
molecule of interest and which correspond to specific treatment 
time windows for treatment-induced neural repair after 
stroke.13,35 The third epoch represents a chronic phase whereby 
the brain is relatively stable with regards to endogenous repair-
related events, but modifications in brain structure and function 
are still possible with specific interventions. These three epochs 
delineate distinct biological states and have clinical implications 
with regards to delivery of restorative therapies.

Studies of spontaneous neural repair after stroke in human 
subjects generally rely on non-invasive methods, in comparison 
with the direct tissue-based measures employed in preclinical 

investigations. The most commonly used methods include struc-
tural and functional magnetic resonance imaging, positron emis-
sion tomography, single photon emission computed tomography, 
electroencephalography, magnetoencephalography, transcranial 
magnetic stimulation (TMS), and near infrared spectroscopy; 
these provide a systems-level perspective on neural repair.34 
These studies show anatomical changes such as thickened or 
thinned cortex in brain regions remote from stroke injury.36-39 
Other studies have focused on functional changes, reporting 

Figure 1. The brain progresses through three epochs after stroke. Each has a 
distinct biology defined by multiple processes ongoing in parallel. For each 
epoch, the general time scale, key therapeutic strategies, and main treat-
ment approaches studied in preclinical and human studies are summarized.

Acute injury

• This phase is measured in hours and varies according to features 
of injury.

• The key therapeutic strategy here is to reduce the extent of injury.
• Main treatment approaches examined to date include
 ► reperfusion
 ► neuroprotection

Recovery stage

• This phase of spectacular growth begins shortly after acute injury 
has stimulated restorative processes, evolves over several weeks, 
and varies in relation to factors such gene expression, molecular 
milieu, environment, and experience.

• This key therapeutic strategy here is to enhance the processes 
underlying spontaneous recovery. Other targets may be related to 
modifying in�ammation, lifting diaschisis, or reducing late neuronal 
death. Acute injury is �xed and so its reduction is not a strategy 
during this stage.

• Main treatment approaches examined to date include
 ► growth factors
 ► monoclonal antibodies
 ► drugs
 ► cell-based therapies
 ► activity-based therapies
 ► brain stimulation

Chronic state

• This phase begins once spontaneous behavioral recovery has 
reached a plateau and the recovery stage critical period has ended. 
This phase typically occurs by three months post-strokes for the 
motor system, sometimes later in cognitive and language domains, 
and continues for the lifetime of the stroke survivor.

• This key therapeutic strategy here consists of interventions to 
induce a state of enhanced plasticity, given that the biological 
state of spontaneous recovery has receded.

• Main treatment approaches examined to date include
 ► drugs
 ► cell-based therapies
 ► activity-based therapies
 ► brain stimulation
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modulation in local and distant cortical and subcortical activity, 
changes in interactions between hemispheres, shifts in cortical 
representational maps, and alterations in brain connectivity.34,40-42 
These modulations in brain structure and function after stroke 
are of greatest benefit to patients with more severe injury43-48 
and at times can be detrimental when present in patients with 
milder injury. The exact contribution that such findings make to 
behavioral recovery can be difficult to estimate across the hu-
man stroke population, where there are numerous sources of 
heterogeneity such as pre-stroke behavioral status, site and size 
of stroke-related brain injury, and choice of therapies following 
stroke. In general, return of functional anatomy towards normal 
patterns is associated with better behaioral outcomes.49

Therapies to promote neural repair 
after stroke

Numerous categories of post-stroke restorative therapy are un-
der study,15,50-52 many in human trials. Most focus on a single 
agent or intervention, and with further understanding of mono-
therapies, combination therapies are likely to receive increased 
attention. As above, some restorative therapies are introduced 
within days of stroke onset and so interact with spontaneous 
neural repair mechanisms, and others are initiated months to 
years after stroke onset.

Growth factors
Growth factors have high potential as an approach to neural re-
pair because they are important during normal CNS develop-
ment and because they play a key role in spontaneous neural re-
pair through mechanisms that include angiogenesis, cell prolif-
eration and differentiation, migration, survival and apoptosis, 
synaptic plasticity, and immunomodulation.53,54 In some cases, a 
rich clinical experience exists for growth factors outside of stroke 
indications, such as for patients with renal failure or infertility. 
The utility of growth factors to promote stroke recovery has been 
studied in preclinical stroke studies. In many cases, preclinical 
studies suggest that administration of exogenous growth factors 
24 hours or more following stroke onset provides a significant 
long-term benefit on behavioral outcomes. Examples of growth 
factors studied in the preclinical setting include brain-derived 
neurotrophic factor (BDNF),55 epidermal growth factor plus 
erythropoietin,56 and human chorionic gonadotropin (hCG) plus 
erythropoietin.57

Data in humans are more sparse regarding growth factor 
therapy after stroke as an approach to neural repair. Most trials 
to date have examined hematopoetic growth factors, which 
have a long record of safety in human applications. Granulocyte-

colony stimulating factor (G-CSF) is one such growth factor that 
was evaluated in the AX200 for Ischemic Stroke (AXIS) study,58 
which found that G-CSF given within 12 hours of stroke was 
safe and well-tolerated in 44 patients. A separate study of 60 
patients also found G-CSF to be safe after stroke.59 However, a 
follow-up study, the AXIS-2 study,60 compared the middle G-CSF 
dose from the AXIS study (135 μg/kg) with placebo in 328 pa-
tients within 9 hours of stroke onset, using a multi-center, ran-
domized, placebo-controlled study design. These authors found 
that G-CSF was not different from placebo on the primary end-
point, modified Rankin scale score at day 90. A meta-analysis of 
studies introducing G-CSF days to years post-stroke did not find 
favorable effects.61

Erythropoietin has also been studied to promote neural repair. 
Preclinical studies suggest that systemically administered eryth-
ropoietin enters the brain and improves when delivered as a sole 
agent after acute injury is fixed, e.g., 24 after stroke onset.62 
Erythropoietin was also found to be safe in a randomized, place-
bo-controlled study of 167 patients who received two doses of 
erythropoietin versus placebo beginning 48 hours after stroke.63 
Other studies found favorable effects of sequential growth factor 
administration, giving a separate growth factor (epidermal 
growth factor56 or beta-hCG57) prior to erythropoietin, with the 
entire regimen initiated 1 to 7 days post-stroke, possibly by pro-
moting neural stem cell proliferation. 

The sequential growth factor approach was translated to hu-
mans in the Beta-hCG+Erythropoietin in Acute Stroke (BETAS) 
study, a single-dose, multisite, open-label, non-controlled safety 
trial that gave 3 hCG doses beginning 1 to 2 days post-stroke 
followed by 3 erythropoietin doses beginning 7 to 8 days after 
stroke. This study identified no safety concerns, and eight of 12 
patients had a day-90 Barthel index score ≥95/100.64 The BETAS 
study was followed by the REGENESIS study.65 This was intended 
to be a randomized, placebo-controlled, double-blind proof of 
concept study of sequential hCG (385 µg subcutaneous on day 
1, 3, and 5 of study participation) and erythropoietin (30,000 IU 
intravenous on day 7, 8, and 9) using the BETAS study treatment 
schedule. This trial was put on hold by regulatory authorities due 
to concerns related to an acute stroke neuroprotective trial66 in 
which high dose erythropoietin (40,000 IU IV at <6, 24, and 48 
hours; cumulative dose 120,000 IU over <48 hours) was initiated 
within 6 hours of stroke onset, despite widely different time 
windows, and thus biological states in the CNS, as compared to 
REGENESIS: erythropoietin was initiated within 6 hours of stroke 
onset in the acute neuroprotective trial and 7 to 8 days after 
stroke onset in the REGENESIS trial. In that acute trial,66 high 
dose erythropoietin was associated with significantly increased 
mortality relative to placebo, mainly intracerebral hemorrhage 
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within the first week post-stroke, which was largely attributable 
to an interaction between erythropoietin and tPA co-administra-
tion—indeed 63% of enrollees in that study received thrombo-
lytic therapy. Subsequently, the REGENESIS trial was modified to 
be a dose-ranging safety study and, due to financial constraints, 
largely moved to India. Enrollment was terminated by the spon-
sor early after 96 enrollees. In REGENESIS, sequential 
hCG+erythropoietin growth factor therapy was found to be safe; 
however, treatment groups did not differ in the primary end-
point, National Institutes of Health Stroke Scale (NIHSS) score 
change to day 90. However, it is uncertain whether study hy-
potheses were robustly tested in this trial, for example, 18% of 
subjects dropped out, 31% of enrollees had mulitiple assessors 
on the primary outcome measure over time despite pretrial 
training to use a single examiner, and only 23% of patients re-
ceived even a single session of occupational therapy. 

Growth factors are generally large proteins for which CNS in-
gress is limited. A number of strategies have been proposed to 
overcome this, such as helping growth factors to cross the 
blood-brain barrier via conjugation to a molecular Trojan horse.67 
Another strategy has been to transfect an exogenous stem cell 
with a gene encoding for a growth factor, as has been studied 
for fibroblast growth factor-2,68 glial cell line-derived neuro-
trophic factor,69 BDNF,70 vascular endothelial growth factor,71 
placenta growth factor,72 or hepatocyte growth factor.73 Devel-
opment of small ligands is another potential solution.74-76 Even if 
one assumes growth factor access to the CNS is limited after 
stroke, these molecules can nevertheless influence brain plastici-
ty through extraneural targets, e.g., via the immune system.77,78 

Monoclonal antibodies
The ability of other large biological molecules, such as monoclo-
nal antibodies, to promote neural repair has also been evaluated. 
Monoclonal antibodies modulate activity within targeted signal-
ing pathways by binding to specific targets such as receptors or 
cell surface markers. This approach has revolutionized patient 
care in numerous conditions, including neoplastic, immunologi-
cal, and others. In the context of neural repair after stroke, 
monoclonocal antibodies have been used to neutralize molecules 
that inhibit growth in the CNS, with the overall appraoch being 
to produce a more permissive growth environment. Axonal 
growth has long been known to occur in the peripheral nervous 
system;79 however, in the CNS three major inhibitors (myelin-as-
sociated glycoprotein [MAG], oligo-myelin glycoprotein, and No-
go-A) reduce the extent to which the growth environment is 
permissive, a situation that is exacerbated by the increase of 
these molecules following stroke onset.13,80 Use of a monoclonal 
antibody to block these inhibitory molecules promotes axonal 

growth.81,82 One recent study randomized 42 patients with stroke 
to placebo versus one of three doses of intravenous GSK249320, 
a humanized IgG1 monoclonal antibody to MAG that has a dis-
abled Fc region. Each patient received two infusions: the first 
administered 24 to 72 hours after stroke onset, and the second, 
9 days later. No safety concerns were identified,83 and one of the 
secondary endpoints, gait velocity, showed a trend toward im-
provement with GSK249320 compared with placebo. However, a 
subsequent phase IIb double-blind, randomized, placebo-con-
trolled study that enrolled 134 patients with ischemic stroke 24 
to 72 hours prior found that two doses of the antibody was not 
superior to placebo for improving gait velocity.84 The antibody 
was well tolerated and showed low immunogenicity, findings 
that are potentially useful to future studies aiming to use a 
monoclonal antibody to modify activity in specific biological 
pathways to improve recovery from stroke.

Drugs
Numerous small molecules have also been examined to improve 
outcome after stroke. Small molecules may have advantages in 
terms of transport through the blood-brain barrier, with many 
being nonpolar and small in size,85 and thus often have high ac-
cess to the brain. In many cases, candidate small molecules rep-
resent repurposed drugs, i.e., those already approved for other 
indications. Many of the small molecules studied for neural re-
pair target a specific brain neurotransmitter system.

Monoaminergic drugs have been studied most often. An early 
focus for the field was on amphetamine,86 which acts on multi-
ple monoaminergic targets. The initial human experience in 
small trials was favorable,87,88 but the Subacute Therapy with 
Amphetamine and Rehabilitation for Stroke (STARS) study was 
not. This randomized, double-blind, placebo-controlled trial did 
not demonstrate a benefit.89 The authors examined 5 weeks of 
twice-weekly amphetamine coupled with physiotherapy versus 
placebo coupled with physiotherapy in 71 patients enrolled 5 to 
10 days post-stroke. The drug was safe but did not improve the 
primary outcome, motor recovery over 3 months using the arm/
leg Fugl-Meyer motor score, as compared to placebo.89 Strengths 
of this study include the use of a single therapist to administer 
all physiotherapy, use of a single examiner to assess study out-
comes, which reduces variance and increases study power, and 
coupling drug exposure with training. A weakness of the study is 
that the treatment protocol was not directly translated from 
preclinical findings, and so the optimal dose, timing, and fre-
quency of amphetamine to promote stroke recovery remains un-
certain. It is difficult to determine whether STARS showed that 
amphetamine is not useful overall, or simply that the one proto-
col examined (twice weekly amphetamine beginning 5 to 10 
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days post-stroke) is not useful.
The neurotransmitter dopamine regulates many aspects of 

neural functioning including excitability, synaptic transmission, 
plasticity, protein trafficking, and gene transcription.90 Not sur-
prisingly, therefore, dopamine has a major role in numerous di-
verse brain processes such as movement, reward, learning, and 
plasticity.91 Furthermore, the role of dopamine in motor control is 
well established, with dopaminergic terminals in motor cortex 
contributing to cortical plasticity and playing a critical role in 
motor skill learning.92,93

Drugs that boost dopaminergic neurotransmission can improve 
learning and plasticity in healthy subjects.94 Similar results have 
been reported after stroke. A randomized, double-blind, placebo-
controlled study in 53 patients within 6 months of stroke onset 
found that 3 weeks of 100 mg of levodopa (in combination with a 
decarboxylase inhibitor, carbidopa, given once/day and combined 
with physical therapy) was significantly better than placebo com-
bined with physical therapy on the primary endpoint, motor status 
by the Rivermead Motor Assessment after 3 weeks.95 This study 
awaits replication. Dopaminergic drugs have the potential advan-
tage that measures of genetic variability may help predict inter-
subject differences in treatment response.96,97 Smaller studies using 
other dopamine agonists have been largely negative, e.g., a place-
bo-controlled, double-blind study of 33 patients 1 to 12 months 
post-stroke did not find a difference between a 9-week course of 
ropinirole+physiotherapy compared to placebo+physiotherapy on 
gait velocity.98 Small studies hint at the potential for noradrenergic 
drugs.99-101 Larger, well designed, fully powered trials are needed in 
this promising area of research.

Serotonin, another monoaminergic neurotransmitter, may also 
be helpful for promoting neural repair and improving stroke re-
covery. Serotonin normally plays a role in modulating multiple 
brain functions, particularly cognitive functions such as response 
inhibition and memory consolidation, and this neurotransmitter 
also modulates the impact of punishment-related signals on 
learning and emotion.102-104 Earlier reports supported the poten-
tial utility of selective serotonin reuptake inhibitor (SSRI) drugs 
for improving motor outcomes after stroke.105-108 Recent reports 
remain supporting, suggesting that boosting serotonin neuro-
transmission improves stroke recovery. Robinson et al.109 per-
formed a multisite, randomized controlled trial for prevention of 
depression among 176 non-depressed patients enrolled within 3 
months of stroke onset. Patients randomized to the placebo arm 
were significantly (P<0.001) more likely to reach the primary 
outcome, development of major or minor depression, as com-
pared to patients in either of the two active comparator arms, 
which were (1) the SSRI escitalopram or (2) problem-solving 
therapy. One analysis of a subgroup of these patients found that 

cognitive outcomes at 12 months were significantly better 
among those randomized to escitalopram, independent of de-
pression, while a separate subgroup analysis found a lower inci-
dence of generalized anxiety disorder with escitalopram or with 
problem-solving therapy.110

The strongest evidence in support of an SSRI to improve out-
comes after stroke comes from The Fluoxetine for Motor Recov-
ery After Acute Ischemic Stroke (FLAME) study.111 This was a 
double-blind, placebo-controlled trial that enrolled non-de-
pressed hemiplegic/hemiparetic patients 5 to 10 days after onset 
of ischemic stroke. Patients were randomized to 3 months of oral 
fluoxetine (20 mg/day) versus placebo. Those randomized to 
fluoxetine showed significantly greater gains on the primary 
endpoint, change in the arm/leg Fugl-Meyer motor score from 
baseline to day 90 (P=0.003), a remarkable 9.7 point difference 
between treatment arms on this 100 point scale, though this re-
sult must be interpreted in light of the fact that a small, non-
significant difference in baseline scores favored the SSRI-treated 
group. Phase 3 trials are underway to further evaluate this find-
ing. Measures of genetic variability may inform likelihood of re-
sponse to a serotonergic drugs.112,113

Kim et al.114 randomized 478 patients in Korea with recent 
(<21 days) ischemic or hemorrhagic stroke to oral escitalopram 
(10 mg/day) or placebo for 3 months. Patients with a history of 
severe depression were excluded. At baseline, enrollees overall 
had mild strokes (average baseline NIHSS score of 4.8) and mild 
depression (Montgomery-Åsberg Depression Rating Scale score 
10.7), with approximately one-fourths showing moderate or se-
vere depressive symptoms. While the drug was well tolerated, 
the frequency of the primary endpiont, moderate or severe de-
pressive symptoms after 3 months defined as Montgomery-As-
berg Depression Rating Scale ≥16, was not different between the 
two treatment arms. A shift analysis did find a significant benefit 
of escitalopram, mainly due to a reduced number of patients 
with mild depressive symptoms at 3 months (P=0.044), and the 
drug also significantly reduced anger symptoms. Post hoc analy-
sis found that the number of patients with zero or minimal de-
pressive symptoms at 3 months was significantly higher in the 
escitalopram group, suggesting directions for endpoint selection 
for future trials of SSRI after stroke. A measure of motor func-
tion at 3 months also did not differ between treatment groups, 
in response to which the authors speculate that SSRIs might im-
prove motor dysfunction after acute stroke only in patients lack-
ing early depression.

Norepinephrine transmission as a drug target has received 
limited study to date in the context of stroke recovery. Normally, 
noradrenergic neurotransmission broadly amplifies neuronal ac-
tivity, increases the general level of excitability, and selectively 
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amplifies activities evoked by unexpected inputs.115 This effect of 
norepinephrine on regulating overall arousal levels has a modu-
latory effect on executive function.103 To date there has been 
only a handful of studies of noradrenergic drugs to promote 
stroke recovery. These have been small in size but showed prom-
ising results.100,116,117

Drugs that modulate neurotransmission in acetylcholinergic 
pathways have also received limited study in relation to neural 
repair. Acetylcholine inputs to neocortex are important to proce-
dural memory and operant conditioning.118 Acetylcholine enables 
plasticity by selectively amplifying anticipated inputs and weak-
ening non-anticipated inputs.115 Modulation of nicotinic cholin-
ergic neurotransmission alters attention, while muscarinic cho-
linergic receptors play a greater role in cognitive flexibility.103 Lu-
ria119 long ago advocated for cholinergic therapies as a major 
pathway to enhancing recovery after brain damage. Studies in 
rodents120,121 and primates122 with experimental stroke support 
this view, but data from human subjects with stroke remain 
sparse,123 though preliminary studies have been favorable.124,125 
Data with respect to non-motor aspects of stroke recovery are 
limited in quantity but potentially promising,123,124,126 and a re-
cent study in 33 patients found that donepezil to be safe when 
initiated within 24 hours of stroke onset.124

Other small molecules have been studied. Evidence suggests 
potential utility of drugs that modulate GABA28 or glutamate27,127 
receptors, and these effects may be particularly dependent on 
the time post-stroke when the agent is introduced. Sildenafil is a 
phosphodiesterase type 5 inhibitor that has shown promise as a 
restorative agent post-stroke128,129 and has been tested in human 
subjects recovering from stroke.130 

Cell-based therapies
Cell-based therapies are receiving increased attention, with 
many types of cell-based therapy under study.131,132 Examples in-
clude transformed tumor cells, adult stem cells such as marrow 
stromal cells, umbilical cord cells, placental cells, embryonic stem 
cells, fetal stem cells, and induced pluripotent cells. Cells may be 
administered alone or with a bioscaffold, with genes modified, or 
after exposure to particular culture conditions such as low oxy-
gen or neurotrophin exposure. Stem cells may be autologous, al-
logeneic, or xenografts. 

Considerable attention has been drawn to mesenchymal stro-
mal cells (MSCs), which are an adult non-hematopoietic pluripo-
tent cell. Abundant preclinical evidence suggests that MSCs im-
prove behavioral outcomes after experimental stroke via several 
different mechanisms in parallel,133 a potential advantage over 
pharmacological therapies that act via a single treatment mech-
anism,134-136 and with a time window that is measured in days or 

weeks post-stroke. A meta-analysis examined 46 preclinical 
studies in which MSC was given after cerebral ischemia.137 MSC 
improved outcomes in 44 of the 46 studies. The mean effect size 
for MSC administration was consistently very large, e.g., averag-
ing 1.78 for the modified Neurological Severity Score across 28 
studies; results were similar overall when analyses were restrict-
ed to studies that initiated MSC ≥24 hours after stroke onset. 
Early phase clinical studies to date are promising.138-142

Cellular therapies can introduce challenges that are uncom-
mon with other classes of restorative therapy. For example, such 
therapies are not a drug or a device but instead consist of living 
cells. As such, the biological potency and identity of the therapy 
can change over time, e.g., during storage or shipping. Some 
stem cells can persist for months or even years after administra-
tion and so require prolonged periods of assessment after im-
plantation. Certain cells generate ethical concerns among some 
patients and scientists.143

Activity-based therapies
A number of intensive activity-based therapy regimens have 
been studied, targeting motor deficits, aphasia, and other forms 
of impairment after stroke. For example, constraint-induced 
movement therapy trains the affected limb while restraining the 
non-affected limb in order to overcome learned disuse of the af-
fected limb. In the Extremity Constraint Induced Therapy Evalua-
tion (EXCITE) trial, constraint-induced therapy was associated 
with significant gains in motor outcome in 222 patients enrolled 
3 to 9 months after stroke onset,144 with these effects remaining 
significant for years.145 This approach has also been studied in 
patients with aphasia.146 The timing of intensive therapies is im-
portant. The Very Early Constraint-Induced Movement during 
Stroke Rehabilitation (VECTORS) trial examined constraint-in-
duced movement therapy early after stroke. Among 52 patients 
enrolled within 1 month of stroke onset, higher intensity of ther-
apy was associated with poorer behavioral outcome at day 
90147—a very high dose of activity too early after stroke might be 
net harmful. The Locomotor Experience Applied Post-Stroke 
(LEAPS) trial compared two therapies focused on gait in 408 pa-
tients within 2 months of stroke, and found that treadmill train-
ing with body-weight support did not differ from progressive ex-
ercise at home managed by a physical therapist in effects on 
walking ability 1 year after stroke.148 Importantly, the LEAPS trial 
found that a majority of patients with stroke can experience sig-
nificant behavioral gains when therapy is initiated many weeks 
after stroke onset, with 52% of treated patients showing im-
proved gait velocity 1 year after stroke onset. Two recent trials 
compared different activity-related therapy in the subacute149 or 
chronic150 phase after stroke and did not see a difference in 
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treatment gains in relation to dose of therapy. One interpretation 
of these two findings is that the doses studied, 30149 or 32150 
hours of activity-based intervention, were too low and that very 
high doses of activity-based therapy may be key to improving 
patient function, similar to the need for very high amounts of 
motor practice to show substantial improvement in motor skills 
among healthy persons.

Robotic and telehealth devices
The effect of therapy delivered by robotic devices has also been 
examined. Numerous robotic devices have been studied.151-155 
These devices offer potential advantages, such as consistent and 
long-lasting output, programmability, utility for virtual reality 
applications, safety, high precision, the potential for an improved 
therapist:patient ratio, and great potential for telerehabilitation 
and therefore ability to reach underserved regions.156 However, 
concerns exist with some aspects of robot-based intervention, 
for example, the need to understand the mechanism of action, 
the response of the therapist community to a robotic device, the 
response of patients to reduced interaction with a human thera-
pist, the effect of such devices on task ecology and object affor-
dance, the limited repertoire that fixed devices have, and the na-
ture of the measurements that a robot is programmed to report. 

In one of the largest studies of robot therapy after stroke, Lo 
et al.157 enrolled 127 patients in the chronic phase of stroke and 
found that robot-assisted therapy did not significantly improve 
motor function after 12 weeks, as compared with usual care or 
intensive therapy; in secondary analyses, robot-assisted therapy 
improved outcomes over 36 weeks as compared with usual care 
but not with intensive therapy. This study may be complicated by 
the fact that enrollees had relatively severe motor deficits. 

Robotic devices have great promise but further research is 
needed. One recent review noted that (1) effects on motor con-
trol are small and specific to the joints targeted by the robotic 
intervention; (2) limited data support generalization of robot-
derived gains to broader functions; and (3) little data exist 
among patients in the initial weeks following stroke onset.155 
Factors that might represent avenues for improving the impact 
of robotic therapy include more fully defining the relationship 
between robotic therapy and traditional physiotherapy, and 
matching the right patients with the right robotic devices and 
protocols.

Telehealth approaches are receiving increased attention due to 
their ability to provide high doses of therapy in a simple, efficient, 
and accessible manner that can extend the resources clinicians 
can provide to stroke survivors.158 There are many different ap-
proaches under study, targeting various neurological deficits, using 
divergent methods to drive patient behavior, and in some cases 

combining rehabilitation and prevention strategies via the same 
system.159-163 We recently evaluated a home-based telerehabilita-
tion system in patients with chronic hemiparetic stroke with onset 
3 to 24 months prior and stable arm motor deficits.164 Enrollees 
received 28 days of telerehabilitation using a system delivered to 
their home, with each day consisting of one structured hour fo-
cused on individualized exercises and games, stroke education, 
plus an hour of free play. Compliance was excellent: participants 
engaged in therapy on 329 of 336 assigned days (97.9%). Arm 
repetitions across the 28 days averaged 24,607±9,934 per partici-
pant. Arm motor status showed significant gains (change in the 
Fugl-Meyer score of 4.8±3.8 points, P=0.0015), with half of the 
participants exceeding the minimal clinically important difference. 
Although scores on tests of computer literacy declined with age 
(r=–0.92, P<0.0001), neither the motor gains nor the amount of 
system use varied with computer literacy. Daily stroke education 
via the telerehabilitation system was associated with a 39% in-
crease in stroke prevention knowledge (P=0.0007). Depression 
scores obtained in person correlated with scores obtained via the 
telerehabilitation system 16 days later (r=0.88, P=0.0001). In-per-
son blood pressure values closely matched those obtained via this 
system (r=0.99, P<0.0001). Based on these findings a phase II trial 
is underway, the results of which are expected to be announced in 
2018.165

Brain stimulation
The brain is an electrical organ and expends considerable energy 
maintaining a specific cellular resting potential. Not surprisingly, 
therefore, electrical and electromagnetic interventions have the 
potential to modify brain function and potentially promote neu-
ral repair to improve outcomes after stroke. Many forms of brain 
stimulation have been studied after stroke, including repetitive 
TMS, theta burst stimulation, epidural cortical stimulation, tran-
scranial direct current stimulation, transcranial alternating cur-
rent stimulation, and stimulation via a laser-based device.166 A 
related intervention, vagal nerve stimulation, has also been eval-
uated in early phase clinical trials.167 There is precedence for a 
focus on brain stimulation, as the gold standard therapy for ma-
jor depression remains a form of brain stimulation—electrocon-
vulsive therapy,168 and repetitive TMS has been approved by the 
U.S. Food and Drug Administration for the treatment of major 
depression.169 Some results with brain stimulation to promote 
improved outcomes after stroke, mainly targeting motor out-
comes, have been favorable170,171 while others have not.172,173 
Large, well designed trials are needed, and further study of non-
motor endpoints is also critical. A phase III trial aiming to im-
prove arm motor outcomes in patients with chronic hemiparetic 
stroke examined neurosurgically implanted epidural cortical 
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stimulation plus physical therapy but did not find this interven-
tion to be significantly different from physical therapy alone;174 
post hoc analysis indicated response to brain stimulation was 
substantially greater among subjects with preservation of physi-
ological integrity or with subtotal injury to key motor system an-
atomical structures, suggesting the ability to stratify patients to 
reduce trial variance and increase effect sizes.36 

Conclusions

Preclinical studies have suggested a large number of therapies 
that may have to improve recovery from stroke. These are in var-
ious stages of translation, with most at an early point of clinical 
trials. Principles of promoting neuroplasticity in a clinical setting 
are emerging and have been reviewed elsewhere.175-177 Issues 
unique to stroke recovery and rehabilitation studies are increas-
ingly being recognized178-180 and are important to effective clini-
cal research in this area. Many patients do not reach the hospital 
in time to receive interventions that can reverse a stroke, and 
half of those who do receive such therapies still show significant 
long-term disability. Restorative therapies that aim to harness 
clinical neuroplasticity may be accessible by a large fraction of 
patients with stroke and so hold the promise to reduce deficits 
and improve function for a majority stroke survivors.
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